Critical Materials & Processes Bonded Joint Issues

Pete Van Voast 425-237-3178 peter.j.vanvoast@boeing.com Kay Blohowiak 425-237-4657 kay.y.blohowiak@boeing.com

FAA Bonded Structures Workshop June 16-18, 2004

Kay and Pete FAA Wksp Rev A.ppt 5/28/2004, 1

Topics

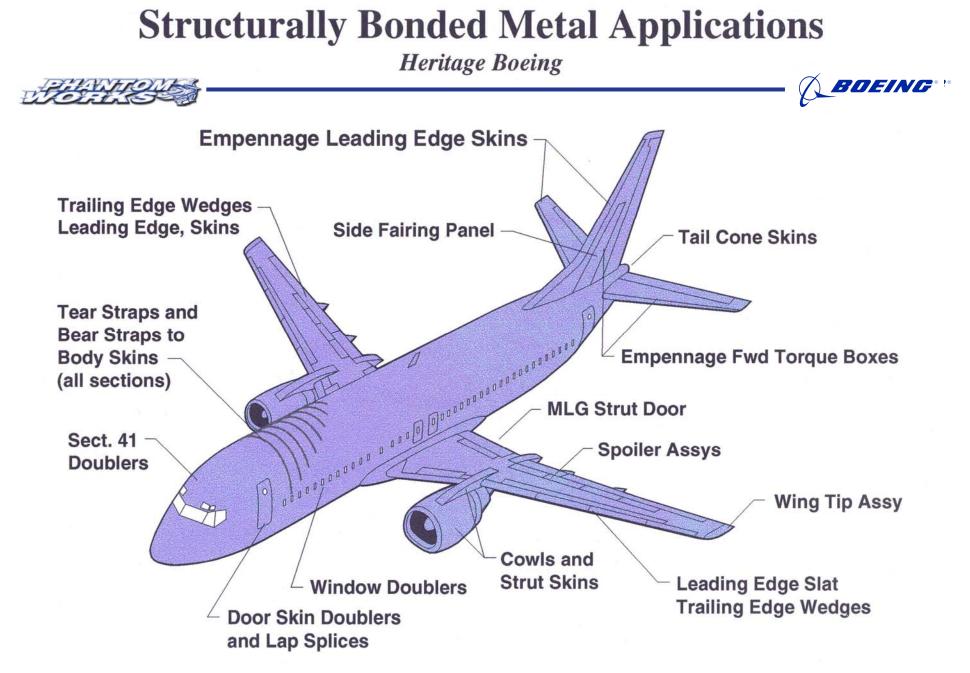
- Overall philosophy
- Metal Bonding Composite Bonding
 - Surface preparation
 - Primers
 - Adhesives
 - Repair
 - Inspection

Philosophy

- The substrate (e.g. specific alloy or composite), surface preparation, and adhesive are a unique system
- Boeing takes a system approach to the qualification and verifies all new products/processes by extensive compatibility tests

Metal Bonding

Aluminum Titanium Stainless Other


Kay and Pete FAA Wksp Rev A.ppt 5/28/2004, 4

Boeing's Historical Bonding Methods

_____*BOEING*`;•

	1950's	1960's D16925	1970's	1980's	1990's D681704	2000+
surface	FPL		PAA; PANTA; Wedge/ DCB	PAD		CWR; Non-Cr, 0V deox; sol gel repair
primer	dissolved adhesive resin	CIAP BMS 5-89 ('69)			Low VOC 0 VOC CIAP	non-chrome
adhesive	BMS5-10 cold bond; 350 F cure nitrile phenolics BMS 5-42	250 F cure epoxies BMS 5-70 to BMS5-51 and 5-80	toughened epoxy nitrile BMS5-101 BMS 5-104	BMS 5-137 better toughness		next gen. adhesives EA9696, FM94 AF555
core		Acid etched foil	pour coat CR core		PAA core	PAA core to carbon skins

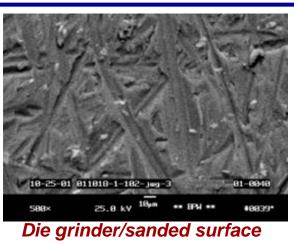
Adhesive Bond Failures

Corroded core

Really corroded core Kay and Pete FAA Wksp Rev A.ppt 5/28/2004, 7

737 body skin waffle doubler with unanodized area

Corrosion products on repair doubler


Types of Prebond Surface Preparations

- Mechanical Deoxidation
 - Grit Blasting, Sanding
- Anodizing
 - PAA, CAA
- Chemical Etching
 - FPL, CAE, HF/Alodine, Pasa Jell 105/107
 FCHAE, Phosphate fluoride
- Functional Coatings
 - GBS, Sol-Gel

Manual Abrade / Solvent Wipe

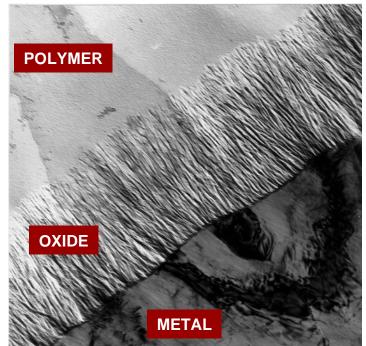
- Grit Blasting
- Sanding
- ScotchBrite Abrasion

Initial adhesion often very good

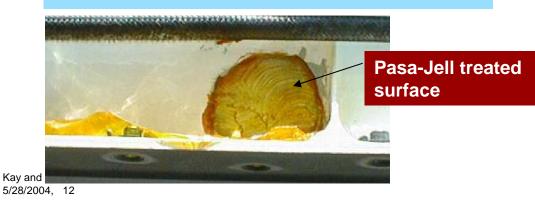
Abraded repair area

- Abrasion or roughening can give some mechanical interlock
- Deoxidation exposes fresh metal for bonding
- Fails at interface under hot/wet conditioning
 - Hydration of aluminum oxides
 - Corrosion
 - Secondary bonding interactions

Kay and Pete FAA Wksp Rev A.ppt 5/28/2004, 9


Anodizing

- Phosphoric Acid Anodize
- Chromic Acid Anodize
- Boric Sulfuric Anodize
- Thin Film Sulfuric Anodize
- Microstructure promotes wetting of adhesive resins
- Mechanical interlock by flow of primer/adhesive into pores resulting in composite interphase
- Good under hot/wet conditioning
 - Phosphoric acid anodizing stabilizes the hydration of aluminum oxides
 - Corrosion control at interface


Phosphoric Acid Anodize

- BAC 5555 issued in 1974
 US Patents 4,085012 & 4,793,903
- Early issues
 - Disbonded PAA waffle doublers (tear straps) on 737
 - "sporadic escapements" of panels with insufficient PAA
 - 747 Section 41 internal doubler disbonding

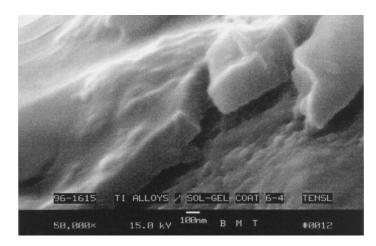
Chemical Etching

- Forest Products Laboratory Etch
- Chromic Acid Etch
- Pasa-Jell 105
- HF/Alodine
- Deoxidizes the metal surface
- May leave chromates that retard corrosion at the interface
- May provide some surface roughening

BOEING

Chromic acid etching process on underwing repair

Issues:

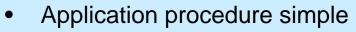

- Health/environment
- Corrosion due to entrapped acid
- Embrittlement of high strength steel
- Performance
- Temp

Boeing Service History Original Bonding Process- FPL Etch

- FPL etch industry standard until mid 1970s
- Numerous service bulletins and Airworthiness Directives (ADs) due to bond durability problems
 - 747 Section 41 flat-sided skin panel (SB 747-53A2321), L/N 1-430
 - 747 tear straps in section 46 (SB 747-53A2279), L/N 1-230
 - 747 Section 41/42 disbond inspection of large radius areas (SB 747-54-2406), L/N 1-430

Functional Coatings

- Silane
 - Australian silane process
 - Grit-blast/silane (GBS)
- Sol-Gel
 - Boegel-EPII / AC-130



Sol-gel coated metal surface

- Chemically bond adhesive to surface
- Crosslinking of resin to functionalized silane
- May be enhanced by surface roughening
- Performance highly dependent on pretreatment

Sol-Gel Process Robustness

Liferin S

- Sol-Gel Process will "work" under a variety of pretreatment conditions
- Best results achieved when using recommended abrasion processes
- Works with and without primer
- Paste and film adhesives

BOEING

Issues:

- Must have clean surface
- Only optimized for use with certain bond primers
- Better results with recommended abrasive procedures

Issues in Qualifying New Surface Preps

- Scope of qualification
 - Cost
 - Meet all design scenarios
- Consistent process among OEM and suppliers
- What kind of specification to write

Qualification Issues

- What criteria do new surface preps have to meet?
- How do you demonstrate 30 year durability in the lab?

Adhesive Bond Primer

- Compatibility with
 surface preparations
- Bake vs. No-bake
- Primer thickness
 window
- Low VOC bond primer development
- Non-Chrome bond primer development

Qualification Issues

Cr vs. Non-Cr Primers

- Nitrile rubber based primers (e.g. BMS 5-42) do not contain any chrome
 Epoxy based primers (e.g. BR127, BR6747-1) do contain chrome
 Long term exposure of DCB specimens in various environments resulted in equivalent behavior of chrome and non-chrome.
- •Chrome bond primer has a benefit in paint applications without additional primer.
- How good is good enough?
- What are the real criteria for implementation?
- Extent of implementation

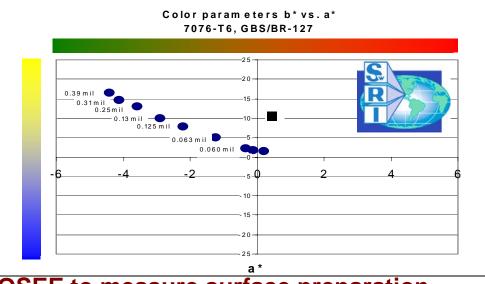
Adhesive Issues- Engineering

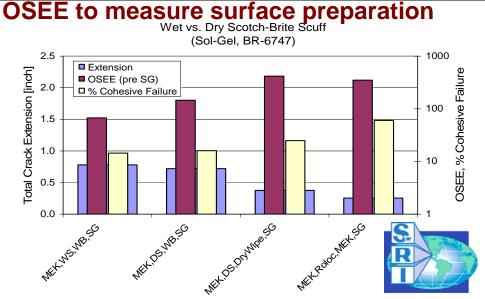
BOEING

- Thermal Capability
- Toughness
- Shear
- Filleting
- Moisture effects (hot/wet)
- Bondline Thickness

Qualification Issues

- Cost of allowables
- Long-term durability


Metal Bond Process Inspection


- Surface Prep Verification
- First Part Qualification correlations
 - Prefit
 - Verifilm
 - TTU
 - Destructive Test
- TTU
- Tap Testing

Questions

- How do you measure success of the process steps
- Kissing bonds

Colorimeter to measure primer thickness

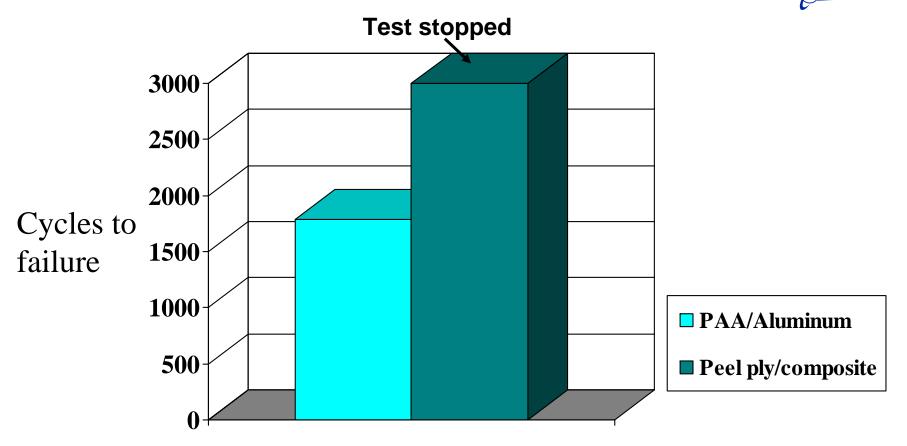
Repair vs. OEM

- Typically better controls at manufacturing level
 - Environmental controls
 - QC/inspection methods
- Fewer tools/materials available in field
- Training/certification
- New clean parts vs. dirty old parts
- Access to repair area
- Potential damage to areas adjacent to repair

70/=/////=?

Why we repair...

Kay and Pete FAA Wksp Rev A.ppt 5/28/2004, 20


Composite Bonding

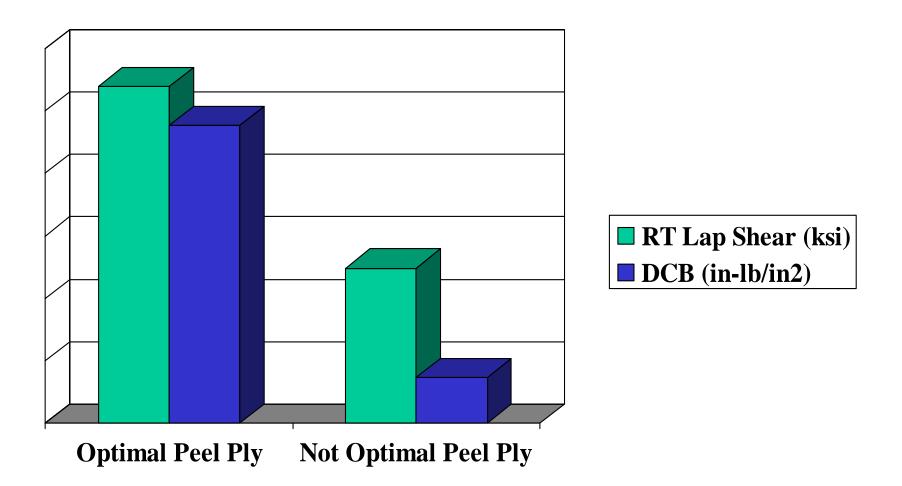
Kay and Pete FAA Wksp Rev A.ppt 5/28/2004, 21

Philosophy

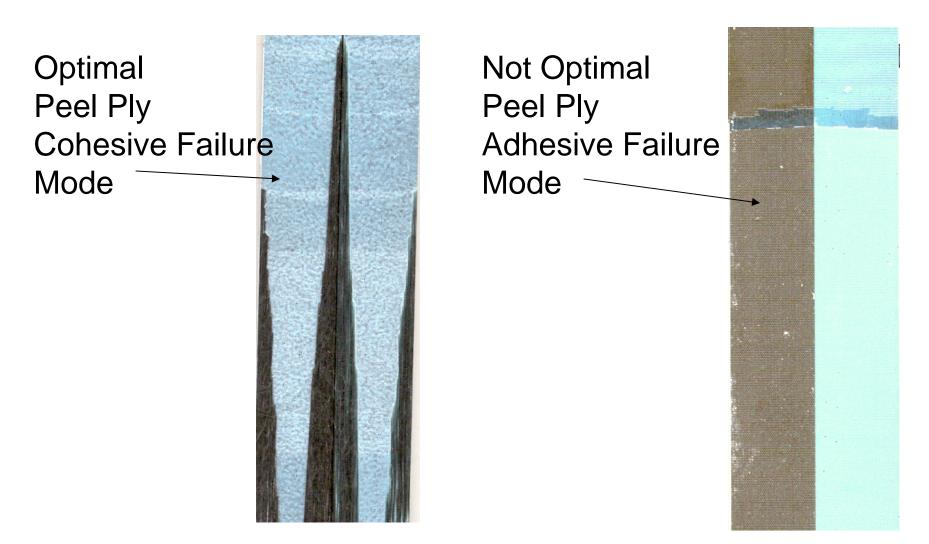
- The substrate (e.g. specific alloy or composite), surface preparation, and adhesive are a unique system
- Boeing takes a system approach to the qualification and verifies all new products/processes by extensive compatibility tests

Composite vs. Metal bond durability 1500 psi Cyclic Fatigue in 140F/100% RHvc

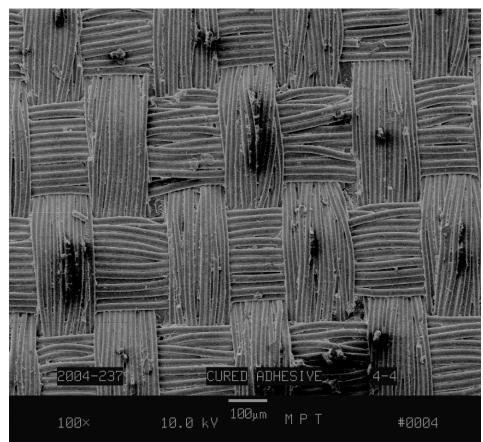
1500 psi lap shear cycles 140F/100% RH


Composite Surface Preparation Methods

- Peel Ply (baseline)
- Grit Blast
- Peel Ply + additional surface preparation

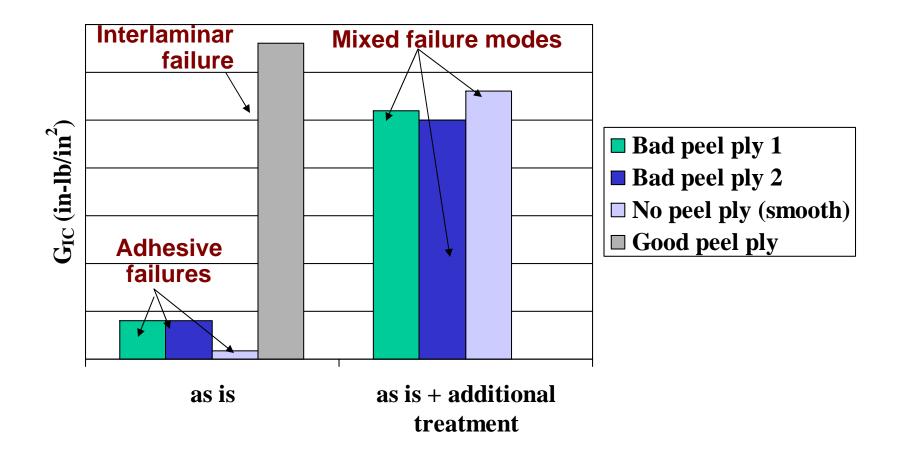

Peel Ply Surface Preparation

- Widely used at Boeing Commercial
- No "universally" functional peel ply
- Sensitivity to using the wrong peel ply
- Cleanliness and max delay requirements
- Excellent durability
- Specification and PCD control for critical applications


Mechanical Properties of Composite Bonds (Optimal vs. not optimal peel ply)

Peel Ply Affects Failure Mode

Using the Wrong Peel Ply Results in Adhesive Failure Mode



Peel Ply Pattern Replicated in Adhesive

Grit Blast Surface Preparation

- Provides an excellent surface for bonding
- Process control issues (pressure, distance, grit control etc.)
- Economics (process time, grit management)

Effect of Additional Surface Treatment on Mode I Fracture Toughness

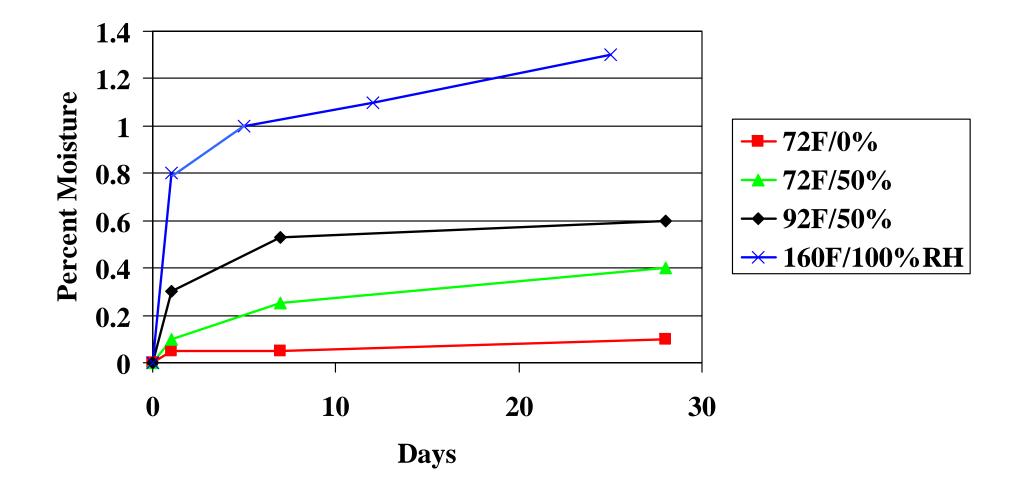
Adhesive Issues - Manufacturing

- Stability Long Out-time and Storage
- Appropriate Tack
- Rheological compatibility and stability
- Compatibility with autoclave and vacuum curing

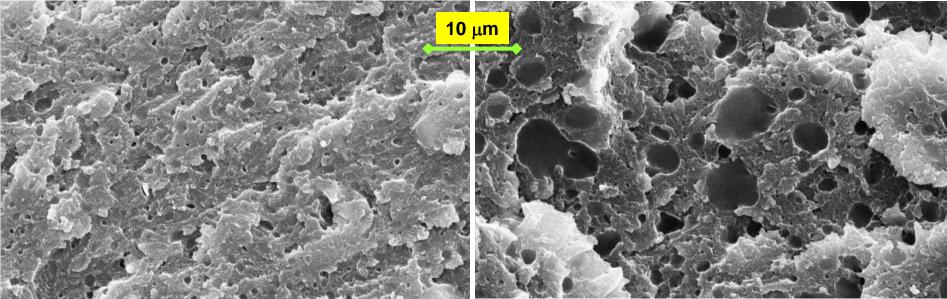
Process Control Document

- Controls formulation, manufacturing and testing of product
- Controls changes to product
- Statistical process control

Adhesive Issues- Engineering

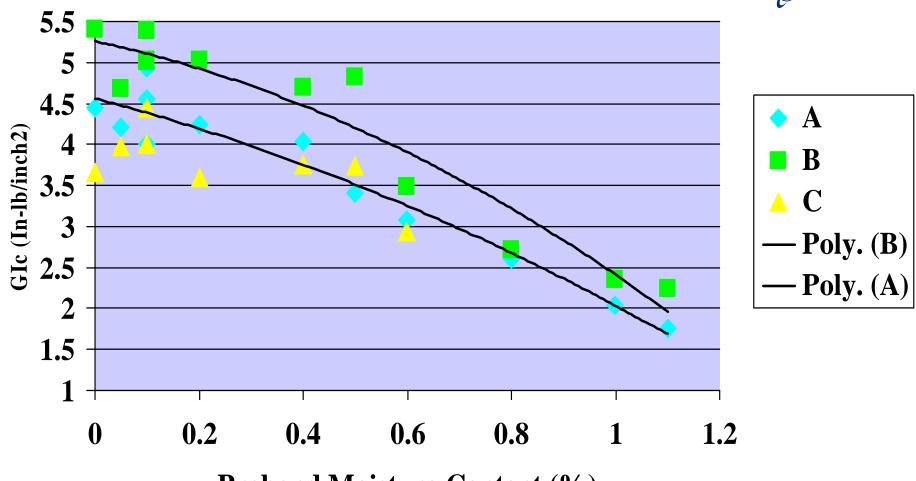

- Prebond humidity
- Thermal Capability including hot/wet
- Toughness
- Shear
- Filleting
- Bondline Thickness

Effect of Prebond Humidity on Adhesive performance


ING

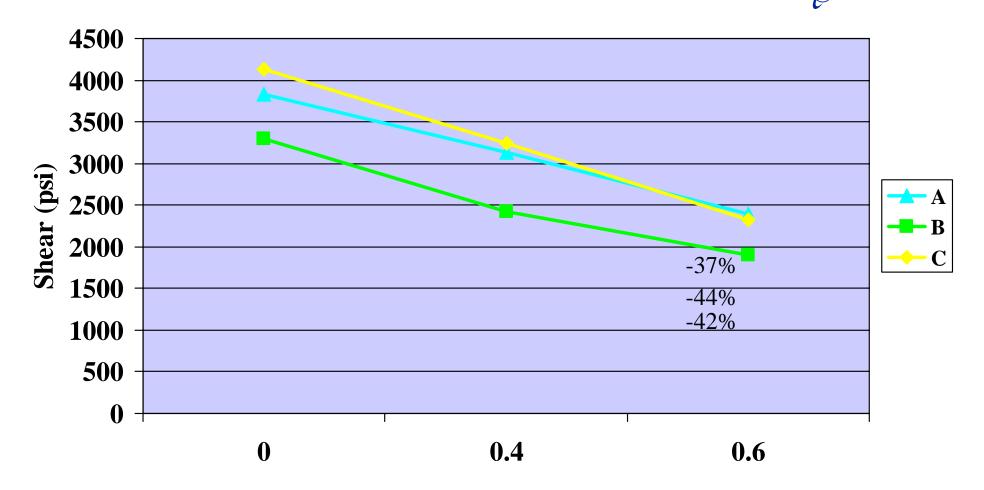
- Different adhesives have different responses to prebond humidity –Morphology
 - -G_{IC} -Lap shear -Tg
 - -Kinetics

Moisture Content vs. Environment 10 ply carbon epoxy laminate


Effect of Prebond Humidity on Adhesive Morphology

Adhesive A bonded immediately

Adhesive A bonded after 28 days at 92F/50% of composite prebond exposure



Prebond Moisture Content (%)

Effect of Pre-bond Humidity on 270°F Lap Shear

BOEING

Prebond Moisture Content (%)

Summary => New Directions

- Surface Preparation
 - Boegel-EPII/AC-130 for metals
 - Grit Blast or enhancements to peel ply for composites
- Adhesives
 - Stability in out-time and prebond humidity
- Inspection
 - Methods of detecting weak bonds